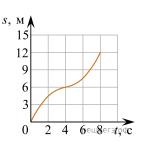
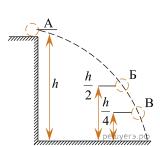

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Среди перечисленных ниже физических величин векторная величина указана в строке:
 - 1) перемещение;
- путь;
- 3) амплитуда;
- 5) работа.
- 2. Частица движется вдоль оси Ох. На рисунке изображён график зависимости координаты x частицы от времени t. В момент времени t=4 с проекция скорости v_x частицы на ось Ox

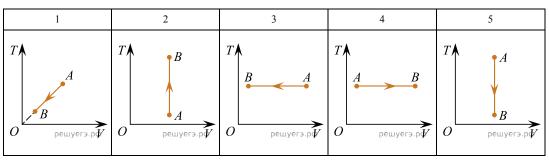


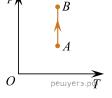
- 1) 2 M/c; 2) 1 M/c; 3) 0.5 M/c; 4) 0.25 M/c;
- 5) -0.5 M/c.
- 3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения υ_1 = 10 м/с, $v_2 = 15$ м/с, $v_3 = 20$ м/с, а радиусы кривизны траекторий $R_1 = 5.0$ м, $R_2 = 7.5$ м, $R_3 = 9.0$ м. Промежутки времени $\Delta t_1, \ \Delta t_2, \ \Delta t_3,$ за которые мотогонщики проедут поворот, связаны соотношением:



- 1) $\Delta t_1 = \Delta t_2 = \Delta t_3$ 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$

- 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$
- 4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s = 12 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:




- 1) 12 M
- 2) 9 M
- 3)6 M
- 4)3 M5) 0 M
- 5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис). Если в точке B полная механическая энергия камня W = 20 Дж, то в точке Б она равна:

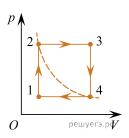
- 1) 0 Дж
- 2) 20 Дж
- 3) 30 Дж
- 4) 40 Дж
- 5) 60 Дж
- 6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 3.0 м/с. Если частота колебаний частиц шнура v = 2,0 Γ ц, то разность фаз $\Delta \varphi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:
 - 1) $\pi/2$ рад
- π рад
- $3) 3\pi/2$ рад
- 2π рад
- 4π рад

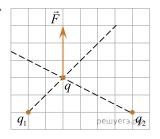
- 7. Идеальный газ массой m=6.0 кг находится в баллоне вместимостью V=5.0 м³. Если средняя квадратичная скорость молекул газа $\langle v_{\text{KB}} \rangle = 700$ м/с, то его давление p на стенки баллона равно:
 - 1) 0,2 MΠa
- 2) 0,4 MΠa
- 3) 0,6 MΠa
- 4) 0,8 MΠa
- 5) 1,0 MΠa
- **8.** С идеальным газом, количество вещества которого постоянно, провели процесс AB, показанный в координатах (p, T). Этот же процесс в координатах (T, V) изображён на графике, обозначенном цифрой:

- 1) 1;
- 2) 2;
- 3) 3;
- 4) 4;
- 5) 5.
- **9.** В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q=18,0 кДж и его давление увеличилось в k=3,00 раза, то начальная температура T_1 газа была равна:
 - 1) 280 K
- 2) 296 K
- 3) 339 K
- 4) 361 K
- 5) 394 K

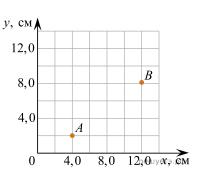
10. На рисунке приведено условное обозначение:

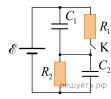
- 1) колебательного контура
- 2) конденсатора
- 3) гальванического элемента5) резистора
- 4) катушки индуктивности
- 11. Диаметр велосипедного колеса d=66 см, число зубьев ведущей звездочки $N_1=44$, ведомой $N_2=14$ (см. рис.). Если велосипедист равномерно крутит педали с частотой v=82 об/мин, то модуль скорости V велосипеда равен ... км/ч.

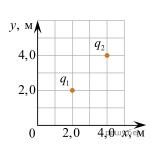

12. Два груза массы $m_1=0.4~\rm kr$ и $m_2=0.2~\rm kr$, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1=At~\rm ir~F_2=2At$, где $A=1.5~\rm H/c$. Если модуль сил упругости нити в момент разрыва $F_{\rm ynp}=20~\rm H$, то нить разорвется в момент времени t от начала движения, равный ... c.


- 13. Тело массой m=100 г свободно падает без начальной скорости с высоты h над поверхностью Земли. Если на высоте $h_1=6,0$ м кинетическая энергия тела $E_{\rm K}=12$ Дж, то высота h равна ... м.
- **14.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=43,6 г. Пуля массой m=2,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м**/**c** .
- **15.** Идеальный одноатомный газ, начальный объем которого $V_1 = 8 \text{ m}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 8 \cdot 10^5$ Па. Газ охлаждают сначала изобарно, а затем продолжают охлаждение при постоянном объеме до давления $p_2 = 4 \cdot 10^5$ Па. Если при переходе из начального состояния в конечное газ отдает количество теплоты Q = 9 MДж, то его объем V_2 в конечном состоянии равен ... \mathbf{m}^3 .
- **16.** Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0 = 4,8\cdot 10^{-5}$ м³. Чтобы объём воздуха в камере стал равным $V_1 = 2,4\cdot 10^{-3}$ м³, его давление достигло значения $p_1 = 1,6\cdot 10^5$ Па, поршень должен сделать число N ходов, равное

Примечание. Атмосферное давление $p_0 = 1,0 \cdot 10^5 \, \mathrm{\Pi a}$, изменением температуры воздуха при накачивании камеры пренебречь.


17. Идеальный одноатомный газ, количество вещества которого $\upsilon=0,400$ моль, совершил замкнутый цикл, точки 2 и 4 которого лежат на одной изотерме. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 — изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=332 Дж. Если в точке 3 температура газа $T_3=1156$ К, то чему в точке 1 равна температура T_1 газа? Ответ приведите в Кельвинах.

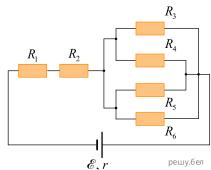

18. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1 = 5,1$ нКл, то заряд q_2 равен ...нКл.


19. Если точечный заряд $q=2,50~{\rm nK}$ л, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... B.

- **20.** Две частицы массами $m_1=m_2=1,00\cdot 10^{-12}~{\rm K}\Gamma$, заряды которых $q_1=q_2=1,00\cdot 10^{-10}~{\rm K}$ л, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние $l=200~{\rm cm}$ между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=15,0~\frac{{\rm M}}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе U_0 = 20 B, а амплитудное значение силы тока в контуре I_0 = 25 мА. Если электроёмкость конденсатора C = 5,0 мк Φ , то период T колебаний в контуре равен ... **мс**.
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100$ мкФ, $C_2=300$ мкФ, ЭДС источника тока $\mathscr{E}=60,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{\mathrm{B}}{\mathrm{M}}$.

24. Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}\mathrm{Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~\mathrm{cyt.}$, то за промежуток времени $\Delta t=8,1~\mathrm{cyt.}$ распадётся ... тысяч ядер $^{198}_{79}\mathrm{Au}$.

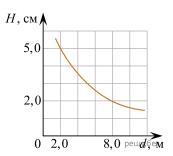

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{A}{c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}},\,$ то ёмкость C конденсатора равна ... мк Φ .

30

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

